Dzl152.ru

Авто Дизель
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Почему в современном компьютере несколько шин?

Почему в современном компьютере несколько шин?

Современный персональный компьютер может быть реализован в настольном (desktop), портативном (notebook) или карманном (handheld) варианте.

Системный блок компьютера

Все основные компоненты настольного компьютера находятся внутри системного блока: системная плата с процессором и оперативной памятью, накопители на жестких и гибких дисках, CD-ROM и др. Кроме этого, в системном блоке находится блок питания.

Системная плата. Основным аппаратным компонентом компьютера является системная плата (рис. 4.4). На системной плате реализована магистраль обмена информацией, имеются разъемы для установки процессора и оперативной памяти, а также слоты для установки контроллеров внешних устройств.

Рис. 4.4. Системная плата

Частота процессора, системной шины и шин периферийных устройств. Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате устанавливаются специальные микросхемы (чипсеты), включающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост) — рис. 4.5.

Северный мост обеспечивает обмен информацией между процессором и оперативной памятью по системной шине. В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. В современных компьютерах частота процессора может превышать частоту системной шины в 10 раз (например, частота процессора 1 ГГц, а частота шины — 100 МГц).

Рис. 4.5. Логическая схема системной платы

К северному мосту подключается шина PCI (Peripherial Component Interconnect bus — шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. Частота контроллеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше — 33 МГц. Контроллеры периферийных устройств (звуковая плата, сетевая плата, SCSI-контроллер, внутренний модем) устанавливаются в слоты расширения системной платы.

По мере увеличения разрешающей способности монитора и глубины цвета требования к быстродействию шины, связывающей видеоплату с процессором и оперативной памятью, возрастают. В настоящее время для подключения видеоплаты обычно используется специальная шина AGP (Accelerated Graphic Port — ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI.

Южный мост обеспечивает обмен информацией между северным мостом и портами для подключения периферийного оборудования.

Устройства хранения информации (жесткие диски, CD-ROM, DVD-ROM) подключаются к южному мосту по шине UDMA (Ultra Direct Memory Access — прямое подключение к памяти).

Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают электрические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются последовательные порты как СОМ1 и COM2, а аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

Принтер подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LPT, а аппаратно реализуется в виде 25-контактного разъема на задней панели системного блока.

Для подключения сканеров и цифровых камер обычно используется порт USB (Universal Serial Bus — универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств.

Клавиатура подключается обычно с помощью порта PS/2.

1. Почему различаются частоты процессора, системной шины и шины периферийных устройств?

2. Почему мышь подключается к последовательному порту, а принтер к параллельному?

4.3. С помощью программы тестирования SiSof tware Sandra провести тестирование материнской платы и определить частоты процессора, системной шины, шины периферийных устройств и шины AGP.

Что такое USB или универсальная последовательная шина

Термин USB это сокращение от англ. Universal Serial Bus (универсальная последовательная шина) и является стандартным типом соединения для различных устройств, при чем не обязательно только в компьютере. Современная техника, находящаяся дома или же допустим в автомобиле, так же обладает данными разъёмами.

Что такое USB и для чего этот разъём нужен

Как правило, USB относят и к разъёмам на устройствах и кабелям, соединяющие разные по назначению устройства.

Этот универсальный стандарт последовательной шины стал для человечества чрезвычайно успешным и используется по всюду. Разъёмы USB, а также USB кабели, используются для соединения как принтеров, сканеров, музыкальных инструментов, компьютерных клавиатуры и мыши, флеш карты, внешних оптических приводы и жёстких дисков, не говоря о возможности подключения при помощи этой последовательной шины практически как любом компьютере, так и на игровых приставках, домашнем аудио и видео оборудование, и даже в автомобилях.

Многие портативные персональные устройства как смартфон, электронные книги и планшетные компьютеры, используют возможности USB для подзарядки своих батарей. Зарядка при помощи USB стала на столько распространённой, что при поломке USB адаптера используемого при зарядке устройства, нет необходимости бежать в магазин для покупки нового, ведь его замену можно найти прямо дома или же подключившись к своему компьютеру, что позволит напрочь отрицать необходимость в таком адаптере.

Версии USB и скорости обмена данными

USB 3.1: часто называемым Super speed +, совместимые устройства способны к передачи данных на скорости 10 Гбит (10240 Мбит), что соответствует Thunderbolt – формат, который когда то считалось, что может стать возможной заменой USB.

USB 3.0: (Super Speed USB), устройства, совместимые с USB 3.0 могут достигать скорости обмена данных до 5Гбит (5120 Мбит).

USB 2.0: называется High Speed USB (высоко скоростной), USB 2.0 совместимое аппаратное обеспечение может достигать скорость обмена данными до 480 Мбит.

USB 1.1: называется Full Speed USB, максимальную скорость которую могут развивать совместимые устройства равно 12 Мбит.

Большинство же USB устройств и USB кабели поддерживают USB 2.0, но USB 3.0 всё больше набирает обороты при производстве. Современные материнские платы распространяются с обеими версиями универсальной последовательной шины.

Читайте так же:
Как сбросить сервис на Форд Мондео 4?

Разъёмы USB и совместимость

Существует довольно большое разнообразие разъёмов USB, но хоть типы их разняться, называются они будут одинаково. Следует понимать, что разъем на кабеле или флеш-накопителе правильно называть вилкой, а вот гнездо на устройстве или же на кабеле удлинителе будет сосудом или более его распространённое название — розетка.

USB-C: имеет официальное название USB Type-C, эти вилки и розетки имеют прямоугольную форму, с четырьмя закруглёнными углами.

USB Type A: называется USB Standart-A, данные вилки и розетки имеют прямоугольную форму, будучи самым распространённым типом USB, является обратно совместимыми друг с другом.

USB Type B — вилки и розетки имеют квадратную форму, с небольшой выемкой в верху. USB 1.1 Type B и USB 2.0 Type B вилки физически совместим с USB 3.0 Type B розетки, а вот обратной совместимости между USB 3.0 Type B вилки и USB 2.0 Type B или USB 1.1 Type B нет.

USB Micro-A: USB разъемы 3,0 Micro-A выглядят как две разные прямоугольные вилки, конденсированных вместе, одна чуть больше, чем другая. USB разъемы 3,0 Micro-A совместимы только с USB 3.0 Micro-AB розетками.

USB 2.0 Micro-A вилки очень малы и имеют прямоугольную форму, напоминающую во многом усохшие USB Type A разъем. Штекер USB Micro-A физически совместим с 3.0 розетками, так и USB 2.0, и USB.

USB Micro-B: USB 3.0 разъемы Micro-B выглядят почти идентично USB 3.0 Micro-розетки, они так же выглядят как две отдельные, но связанные вилки. USB 3.0 разъемы Micro-B совместимы с USB 3.0 Micro-B розетками, а также с USB 3.0 Micro-AB. USB 2.0 Micro-B вилки очень малы и прямоугольной формы, причём два угла на одной из длинных сторон скошены. USB Micro-B разъемы физически совместим с USB 2.0 Micro-B и Micro-AB розетками, а также с USB 3.0 Micro-B и Micro-AB.

USB Mini-A: USB 2.0 Mini-разъём имеет прямоугольную форму, но одна имеет закругление. Вилки USB Mini-A совместимы только с USB Mini-AB розетками. USB 3.0 Mini-A разъем, не существует.

USB Mini-B: 2.0 Mini-B разъем USB имеет прямоугольную форму с небольшими щербинками по обе стороны, что можно сравнить с нарезкой хлеба, если смотреть на него в лоб. USB Mini-B разъем физически совместим с USB 2.0 Mini-B и мини-AB розетками. USB 3.0 Mini-B разъем не существует.

Что такое USB ? Это возможность для подключения различных периферийных устройств. Это не только сэкономит место на плате, но и экономит инженерные усилия, следовательно, снижает производственные затраты. Что не только удобно для пользователя, но дёшево.

Почему в современном компьютере несколько шин?

Название работы: Магистрально-модульная организация компьютера

Категория: Конспект урока

Предметная область: Педагогика и дидактика

Описание: Такая конструкция удобна для пользователя поскольку все устройства можно разместить на столе так как ему хочется. Поэтому далее мы подробно рассмотрим основные узлы компьютера процессор память и устройства ввода и вывода и взаимодействие между ними.

Дата добавления: 2014-04-22

Размер файла: 236 KB

Работу скачали: 13 чел.

Урок 1. 10 класс

1. Магистрально-модульная организация компьютера

1.1. Что значит «устройство компьютера»?

Компьютер – это пример очень сложной техники. При изучении таких систем воз- можно несколько разных подходов. Например, можно изучать:

устройство конкретного экземпляра компьютера: набор микросхем, тип основной платы, конструкцию и разновидности модулей памяти и т.п.;

семейство компьютеров, например, IBM-совместимые персональные компьютеры; различные конструкции компьютеров (настольные компьютеры, портативные ком- пьютеры, карманные компьютеры);

функциональное устройство компьютера, т.е. его основные узлы и способы взаи- модействия между ними.

Каждый из этих подходов полезен при решении определенных задач. Так для на- стройки конкретного компьютера необходимо точно знать марки и параметры его уст- ройств. Определить эти данные можно с помощью специального программного обеспече- ния. К сожалению, любые знания в этой области очень быстро устаревают, поскольку ап- паратура постоянно меняется.

Если изучать особенности одного семейства компьютеров , мы получим «однобо- кое» представление об устройстве компьютерной техники, так как каждое семейство име- ет свои особенности.

Современные компьютеры очень разнообразны и поэтому имеют самую различную конструкцию и внешний вид. Настольный ПК состоит из системного блока и подключен- ных к нему внешних устройств. Такая конструкция удобна для пользователя, поскольку все устройства можно разместить на столе так, как ему хочется.

В переносных компьютерах весь минимально необходимый набор устройств собран в одном корпусе. Сейчас такие компьютеры называют ноутбуками (англ. notebook – тет- радь, блокнот). По своим вычислительным возможностям они практически не уступают настольным ПК.

Растет популярность так называемых нетбуков (от слов «Интернет» и «ноутбук») – так называют очень маленькие и легкие переносные компьютеры. Кроме меньшего разме- ра и веса, нетбуки отличаются от ноутбуков бóльшим временем автономной работы и меньшей стоимостью. Нетбуки предназначены для пользователей, которые применяют компьютер главным образом для работы в Интернете и подготовки простых документов. Их используют люди, совершающие большое число поездок.

Карманные персональные компьютеры (КПК) 21 умещаются на ладони. У большин- ства из них даже нет клавиатуры, а для ввода информации нажимают пластиковой палоч- кой (она называется стилус ) на сенсорный (реагирующий на прикосновение) экран.

С другой стороны, мощные серверы и суперкомпьютеры по-прежнему собираются в виде крупных «шкафов», напоминающих ЭВМ предыдущих поколений. Наконец, нельзя

не упомянуть и о бытовой электронике, которая все больше и больше приближается к тра- диционным компьютерам.

Разнообразие типов современных компьютеров говорит о том, что конструкция – это не самое главное. В то же время, как показано в п. 5.2, их функциональное устройство

21 Их называют также наладонниками (англ. palmtop ) и PDA (англ. Personal Digital Assistant – персональный цифровой помощник).

практически не изменяется. Поэтому далее мы подробно рассмотрим основные узлы ком- пьютера (процессор, память и устройства ввода и вывода) и взаимодействие между ними.

Читайте так же:
Какая коробка стоит на Ситроен с4?

1.2. Взаимодействие устройств

Процессор должен обмениваться данными с внутренней памятью и устройствами ввода и вывода. Выделить отдельные каналы для связи процессора с каждым из много- численных устройств нереально. Вместо этого сделана общая линия связи, доступ к кото- рой имеют все устройства, использующие ее по очереди. Такой информационный канал называется шиной .

Шина (или магистраль ) – это группа линий связи для обмена данными между несколь- кими устройствами компьютера.

Традиционно шина делится на три части:

шина данных, по которой передаются данные;

шина адреса, определяющая, куда именно передается информация;

шина управления, которая организует процесс обмена (несет сигналы чтение/запись, обращение к внутренней/внешней памяти, данные готовы/не готовы и т.п.).

шина данных шина управления

Рассмотрим процесс записи данных из процессора в память. Процессор выставляет на шину данных информацию для записи, на шину адреса – нужный адрес памяти, а на шину управления – сигналы для записи информации в память. Далее он вынужден ожи- дать, пока данные будут «взяты» с шины. В это время все остальные устройства постоян- но «слушают» шину (проверяют ее состояние). В нашем примере по сигналам на шине память обнаруживает, что для нее имеются данные. Она сохраняет их по заданному адре- су и должна по шине управления сообщить процессору, что операция завершена. На прак- тике, учитывая высокую надежность работы памяти, сигнал подтверждения часто не ис- пользуется: процессор просто выжидает определенное время и продолжает выполнение программы. Из этого примера понятно, что для успешного обмена данными по шине должны быть введены четкие правила (их принято называть протоколом шины ), которые должны соблюдать все устройства.

По сравнению с первыми ЭВМ, взаимодействие процессора с внешними устройст- вами организуется теперь по-другому. В классической архитектуре процессор контроли- ровал все процессы ввода-вывода. Получалось так, что быстродействующий процессор тратил много времени на ожидание при работе с значительно более медленными внешни- ми устройствами. Поэтому появились специальные электронные схемы, которые руково- дят обменом информацией между процессором и внешними устройствами. В третьем по-

колении такие устройства назывались каналами ввода-вывода , а в четвертом – контролле- рами 22 (на схеме они обозначены буквой К).

Контроллер – это электронная схема для управления внешним устройством и для про- стейшей предварительной обработки данных.

Современный контроллер – это микропроцессор, предназначенный специально для обслуживания одного (или даже нескольких однотипных) устройств ввода-вывода или внешней памяти. Нагрузка на центральный процессор при этом существенно снижается, и это увеличивает эффективность работы всей системы в целом. Контроллер, собранный в виде отдельной микросхемы называют микроконтроллером .

В качестве примера рассмотрим контроллер современного жесткого диска. Его ос- новная задача – по принятым от процессора координатам найти на диске требуемые дан- ные, прочитать их и передать в ОЗУ. Но контроллер способен выполнять и другие, порой весьма нетривиальные функции. Так он сохраняет в служебной области диска информа- цию обо всех имеющихся на магнитной поверхности некачественно изготовленных секто- рах (а их при современной высокой плотности записи избежать не удается!) и способен

«на ходу» подменять их резервными, что создает видимость диска, который полностью свободен от дефектов 23 .

Как видно из приведенной выше схемы, теперь данные могут передаваться между внешними устройствами и ОЗУ напрямую, минуя процессор. Кроме того, наличие шины существенно упрощает подсоединение к ней новых устройств. Архитектуру, которую можно легко расширять за счет подключения к шине новых устройств, часто называют магистрально-модульной .

Если спецификация на шину (детальное описание всех ее логических и физических

параметров) является открытой (опубликована), то производители могут разрабатывать к такой шине любые дополнительные устройства. Такой подход называют принципом от- крытой архитектуры . При этом в компьютере предусмотрены стандартные разъемы для подключения новых устройств, удовлетворяющих стандарту. Поэтому пользователь мо- жет собрать такой компьютер, который ему нужен. Необходимо только помнить, что при подключении любого нового устройства нужно установить специальную программу – драйвер , которая обеспечивает обмен данными между этим устройством и процессором.

В современных компьютерах для повышения эффективности работы используется несколько шин, например, одна – между процессором и памятью, другая – от процессора к видеосистеме и т.д.

1.3. Обмен данными с внешними устройствами

Существуют три режима обмена данными между центральным процессором (ЦП) и внешними устройствами:

программно-управляемый ввод/вывод; обмен с устройствами по прерываниям; прямой доступ к памяти (ПДП).

При программно-управляемом обмене все действия по вводу или выводу преду-

смотрены в теле программы. Процессор полностью руководит ходом обмена, включая ожидание готовности периферийного устройства и прочие временн ы е задержки, связан- ные с процессами ввода/вывода. Достоинства этого метода – простота и отсутствие до- полнительного оборудования, недостаток – большие потери времени из-за ожидания бы- стро работающим процессором более медленных устройств ввода/вывода.

При обмене по прерываниям устройства ввода-вывода в случае необходимости са- ми требуют внимания процессора. Например, клавиатура оповещает процессор каждый

22 Это название происходит от английского слова control – управление; не следует путать с русским словом

раз, когда была нажата или отпущена клавиша; все остальное время процессор выполняет программу, вообще «не отвлекаясь» на клавиатуру. Когда прерывание произошло, ЦП

«откладывает» на некоторое время выполнение основной программы и переходит на слу- жебную программу обработки прерывания. Завершив его обработку, ЦП снова возвраща- ется к тому месту программы, где она оказалась прервана. При этом основная программа даже «не заметит» возникшей задержки. Этот режим обмена более сложен, но зато значи- тельно эффективнее – процессор не тратит время на ожидание.

Представим себе, что в кабинете начальника идет совещание, и в этот момент по те- лефону поступает важная информация, требующая немедленного принятия решения. Сек- ретарша, не дожидаясь конца совещания, сообщает начальнику о звонке. Тот, прервав свое выступление, снимает трубку, выясняет суть дела и сообщает свое решение. Затем он продолжает совещание, как ни в чем не бывало. Здесь роль ЦП играет начальник, а теле-

Читайте так же:
Какие диски стоят на Nissan Almera?

фонный звонок – это запрос (требование) на прерывание. «Секретарша» в компьютере то- же предусмотрена – это контроллер прерываний, анализирующий и сортирующий все по- ступающие прерывания с учетом их важности ( приоритета ).

Механизм прерываний используется не только в аппаратной части, но и в програм- мах, которые основаны на обработке событий (нажатий на клавиши, команд управления от мыши и т.п.). Такая технология лежит в основе современных операционных систем и применяется в системах разработки программ MS Visual Studio , Visual Basic , Delphi , Laza- rus и им подобных.

В обоих описанных выше вариантах управление обменом выполнял центральный процессор. Именно он извлекал из памяти выводимые данные (или записывал туда вводи- мые), подсчитывал их количество и полностью контролировал работу шины. Если переда-

ваемые данные не требуют сложной обработки, ЦП напрасно расходует время на прове- дение обмена. Чтобы освободить процессор от этой работы и увеличить скорость переда- чи крупных блоков данных от устройства ввода в память и обратно, применяется прямой доступ к памяти (ПДП, англ. DMA = D irect M emory A ccess ).

Принципиальное отличие ПДП состоит в том, что в этом режиме процессор не про- изводит обмен, а только подготавливает его, программируя контроллер ПДП: устанавли- вает режим обмена, а также передает начальный адрес ОЗУ и количество циклов обмена. Далее контроллер в ходе ПДП самостоятельно наращивает первое значение и уменьшает второе, что позволяет освободить центральный процессор.

Изложенный материал о режимах ввода/вывода может быть сведен в таблицу (здесь

Основные характеристики шины

Разрядность шины определяется числом параллельных проводников, входящих в нее. Первая шина ISA для IBM PC была восьмиразрядной, т.е. по ней можно было одновременно пере­давать 8 бит. Системные шины современных ПК, например, Pentiurr IV — 64-разрядные .

Пропускная способность шины определяется коли­чеством байт информации, передаваемых по шине за секунду. Для определения пропускной способности шины необходимо умно­жить тактовую частоту шины на ее разрядность. Например, для 16-разрядной шины ISA пропускная способность определяется так

(16 бит * 8,33 МГц): 8 = 16,66 Мбайт/с.

При расчете пропускной способности, например шины AGP, следует учитывать режим ее работы: благодаря увеличению в два раза тактовой частоты видеопроцессора и изменению протокола передачи данных удалось повысить пропускную способность шины в два (режим 2х) или в четыре (режим 4*) раза, что эквивален­тно увеличению тактовой частоты шины в соответствующее чис­ло раз (до 133 и 266 МГц соответственно).

Внешние устройства к шинам подключаются посредством ин­терфейса (Interface — сопряжение), представляющего собой сово­купность различных характеристик какого-либо периферийного устройства ПК, определяющих организацию обмена информаци­ей между ним и центральным процессором.

К числу таких характеристик относятся электрические и вре­менные параметры, набор управляющих сигналов, протокол об­мена данными и конструктивные особенности подключения. Об­мен данными между компонентами ПК возможен только если интерфейсы этих компонентов совместимы.

Стандарты шин ПК

Принцип IBM-совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК, что, в свою очередь, определяет гибкость системы в целом, т.е. возможность по мере необходимости изменять конфигурацию системы и подключать различные периферийные устройства. В случае несовместимости интерфейсов используются контроллеры. Кроме того, гибкость и унификация системы достигаются за счет введения промежуточ­ных стандартных интерфейсов, таких как интерфейсы последова­тельной и параллельной передачи данных. Эти итерфейсы необхо­димы для работы наиболее важных периферийных устройств вво­да и вывода.

Системная шина предназначена для обмена информаци­ей между CPU, памятью и другими устройствами, входящими в систему.

К системным шинам относятся:

— GTL, имеющая разрядность 64 бит, тактовую частоту 66, 100 и 133 МГц;

— EV6, спецификация которой позволяет повысить ее тактовую частоту до 377 МГц.

Шины ввода/вывода совершенствуются в соответствии с развитием периферийных устройств ПК. В табл. 2.5 представлены характеристики некоторых шин ввода/вывода.

Шина ISA в течение многих лет считалась стандартом ПК, одна­ко и до сих пор сохраняется в некоторых ПК наряду с современной Шиной PCI. Корпорация Intel совместно с Microsoft разработала стратегию постепенного отказа от шины ISA. Вначале планируется Исключить ISA-разъемы на материнской плате, а впоследствии исключить слоты ISA и подключать дисководы, мыши, клавиа­туры, сканеры к шине USB, а винчестеры, приводы CD-ROM, DVD-ROM — к шине ШЕЕ 1394. Однако наличие огромного пар­ка ПК с шиной ISA и соответствующих комплектующих позволя­ет предполагать, что 16-разрядная шина ISA будет востребована еще на протяжении некоторого времени.

Шина EISA стала дальнейшим развитием шины ISA в направ­лении повышения производительности системы и совместимости ее компонентов. Шина не получила широкого распространения в связи с ее высокой стоимостью и пропускной способностью, ус­тупающей пропускной способности появившейся на рынке шины VESA.

Шина VESA, или VLB, предназначена для связи CPU с быст­рыми периферийными устройствами и представляет собой рас­ширение шины ISA для обмена видеоданными. Во времена преоб­ладания на компьютерном рынке процессора CPU 80486 шина VLB была достаточно популярна, однако в настоящее время ее вытеснила более производительная шина PCI.

Шина PCI была разработана фирмой Intel для процессора Pentium и представляет собой совершенно новую шину. Основопо­лагающим принципом, положенным в основу шины PCI, является применение так называемых мостов (Bridges), которые осуще­ствляют связь между шиной PCI и другими типами шин. В шине PCI реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия CPU).

Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. В этом случае центральный процессор осво­бождается для решения других задач, пока происходит передача данных. В современных материнских платах тактовая частота шины PCI задается как половина тактовой частоты системной шины, т.е. при тактовой частоте системной шины 66 МГц шина PCI бу­дет работать на частоте 33 МГц. В настоящее время шина PCI стала фактическим стандартом среди шин ввода/вывода. На рис. 2.6 дана архитектура шины PCI

Читайте так же:
Почему не работает клаксон?

Шина AGP — высокоскоростная локальная шина ввода/выво­да, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер (ЗО-акселератор) с системной памятью ПК. Шина AGP была разработана на основе архитектуры шины PCI, поэтому она также является 32-разрядной. Однако при этом у нее есть дополнительные возможности увеличения пропускной спо­собности, в частности, за счет использования более высоких такто­вых частот.

Если в стандартном варианте 32-разрядная шина PCI имеет тактовую частоту 33 МГц, что обеспечивает теоретическую пропускную способность PCI 33 х 32= 1056 Мбит/с= 132 Мбайт/с, то шина AGP тактуется сигналом с частотой 66 МГц, поэтому ее пропускная способность в режиме 1х составляет 66 х 32 = 264 Мбайт/с; в режиме 2х эквивалентная тактовая частота составляет 132 МГц, а пропускная способность — 528 Мбайт/с; в режиме 4х пропускная способность около 1 Гбайт/с.

Шина USB была разработана лидерами компьютерной и теле­коммуникационной промышленности Compaq, DEC, IBM, Intel, Microsoft для подключения периферийных устройств вне корпу­са PC. Скорость обмена информацией по шине USB составляет 12 Мбит/с или 15 Мбайт/с. К компьютерам, оборудованным ши­ной USB, можно подключать такие периферийные устройства, как клавиатура, мышь, джойстик, принтер, не выключая питания. Шина TJSB поддерживает технологию Plug & Play.

При подсоединении периферийного устройства его конфигурирование осуществляется автоматически. Все периферийные устройства должны быть обору­дованы разъемами USB и подключаться к ПК через отдельный вы­носной блок, называемый USB-хабом, или концентратором, с помощью которого к ПК можно подключить до 127 периферийных устройств. Архитектура шины USB представлена на рис. 2.7.

Шина SCSI (Small Computer System Interface) обеспечивает ско­рость передачи данных до 320 Мбайт/с и предусматривает под­ключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Отличитель­ной особенностью шины SCSI является то, что она представляет собой кабельный шлейф. С шинами PC (ISA или PCI) шина SCSI связана через хост-адаптер (Host Adapter). Каждое устройство, подключенное к шине, имеет свой идентификационный номер (ID). Любое устройство, подключенное к шине SCSI, может ини­циировать обмен с другим устройством.

На рис. 2.8 показано подключение периферийных устройств к ПК с помощью шины SCSI. Существует широкий диапазон вер­сий SCSI, начиная от первой версии SCSI I, обеспечивающей максимальную пропускную способность 5 Мбайт/с, и до версии Ultra 320 с максимальной пропускной способностью 320 Мбайт/с. С шиной SCSI может конкурировать шина IEEE 1394.

Шина IEEE 1394 — это стандарт высокоскоростной локальной последовательной шины, разработанный фирмами Apple и Texas Instruments. Шина IEEE 1394 предназначена для обмена цифровой информацией между ПК и другими электронными устройствами, особенно для подключения жестких дисков и устройств обработ­ки аудио- и видеоинформации, а также работы мультимедийных приложений. Она способна передавать данные со скоростью до 1600 Мбит/с, работать одновременно с несколькими устройства­ми, передающими данные с разными скоростями, как и SCSI. Как и USB, шина IEEE 1394 полностью поддерживает техноло­гию Plug & Play, включая возможность установки компонентов без отключения питания ПК.

Подключать к компьютеру через интерфейс IEEE 1394 можно практически любые устройства, способные работать с SCSI. К ним относятся все виды накопителей на дисках, включая жесткие, оптические, CD-ROM, DVD, цифровые видеокамеры, устрой­ства записи на магнитную ленту и многие другие периферийные устройства. Благодаря таким широким возможностям, эта шина стала наиболее перспективной для объединения компьютера с бытовой электроникой. В настоящее время уже выпускаются адап­теры IEEE 1394 для шины PCI.

Типы шин современного пк и их характеристика

Основной обязанностью системной шины является переда­ча информации между базовым микропроцессором и осталь­ными электронными компонентами компьютера. По этой шине осуществляется также адресация устройств и происхо­дит обмен специальными служебными сигналами. Таким об­разом, упрощенно системную шину можно представить как совокупность сигнальных линий, объединенных по их назна­чению (данные, адреса, управление). Передачей информации по шине управляет одно из подключенных к ней устройств или специально выделенный для этого узел, называемый ар­битром шины.

Системная шина IBM PC и IBM PC/XT была предназначена. Для одновременной передачи только 8 бит информации, так как используемый в компьютерах микропроцессор 18088 имел 8 линий данных. Кроме того, системная шина включала 20 адресных линий, которые ограничивали адресное пространство пределом в 1 Мбайт. Для работы с внешними устройствами в этой шине были предусмотрены также 4 линии аппаратных прерываний (IRQ) и 4 линии для требования внешними устройствами прямого доступа в память (DMA, Direct Memory Access). Для подключения плат расширения использовались специальные 62-контактные Разъемы. Заметим, что системная шина и микропроцессор синхронизиоовались от одного тактового генератора с частотой 4,77 МГц. Таким образом, теоретически скорость передачи дан­ных могла достигать более 4,5 Мбайта/с.

Шина isa

В компьютерах PC/AT, использующих микропроцессор i80286, впервые стала применяться новая системная шина ISA (Industry Standard Architecture), полностью реализующая возможности упо­мянутого микропроцессора. Она отличалась наличием дополни­тельного 36-контактного разъема для соответствующих плат рас­ширения. За счет этого количество адресных линий было увели­чено на четыре, а данных — на восемь. Теперь можно было пере­давать параллельно уже 16 разрядов данных, а благодаря 24 ад­ресным линиям напрямую обращаться к 16 Мбайтам системной памяти. Количество линий аппаратных прерываний в этой шине было увеличено с 7 до 15, а каналов DMA — с 4 до 7. Надо отме­тить, что новая системная шина ISA полностью включала в себя возможности старой 8-разрядной шины, то есть все устройства, используемые в PC/XT, могли без проблем применяться и в PC/AT 286. Системные платы с шиной ISA уже допускали воз­можность синхронизации работы самой шины и микропроцессо­ра разными тактовыми частотами, что позволяло устройствам, выполненным на платах расширения, работать медленнее, чем базовый микропроцессор. Это стало особенно актуальным, когда тактовая частота процессоров превысила 10—12 МГц. Теперь сис­темная шина ISA стала работать асинхронно с процессором на частоте 8 МГц. Таким образом, максимальная скорость передачи теоретически может достигать 16 Мбайт/с.

Читайте так же:
Можно ли с одного телефона следить за другим?

3.1.2. Шина eisa

С появлением новых микропроцессоров, таких, как i80386 и i486, стало очевидно, что одним из вполне преодолимых препят­ствий на пути повышения производительности компьютеров с этими микропроцессорами является системная шина ISA. Дело в том, что возможности этой шины для построения высокопроиз­водительных систем следующего поколения были практически исчерпаны. Новая системная шина должна была обеспечить наи­больший возможный объем адресуемой памяти, 32-разрядную передачу данных, в том числе и в режиме DMA, улучшенную систему прерываний и арбитраж DMA, автоматическую конфи­гурацию системы и плат расширения. Такой шиной для IBM PC-совместимых компьютеров стала EISA (Extended Industry Standard Architecture). Заметим, что системные платы с шиной EISA первоначально были ориентированы на вполне конкретную область применения новой архитектуры, а именно на компьютеры, осна­щенные высокоскоростными подсистемами внешней памяти на жестких магнитных дисках с буферной кэш-памятью. Такие ком­пьютеры до сих пор используются в основном в качестве мощ­ных файл-серверов или рабочих станций.

В EISA-разъем на системной плате компьютера помимо, разу­меется, специальных EISA-плат может вставляться либо 8-, либо 16-разрядная плата расширения, предназначенная для обыкновенной PC/AT с шиной ISA. Это обеспечивается простым, но поистине гениальным конструктивным решением. EISA-разъе­мы имеют два ряда контактов, один из которых (верхний) ис­пользует сигналы шины ISA, а второй (нижний) — соответствен­но EISA. Контакты в соединителях EISA расположены так, что рядом с каждым сигнальным контактом находится контакт «Зем­ля». Благодаря этому сводится к минимуму вероятность генера­ции электромагнитных помех, а также уменьшается восприим­чивость к таким помехам.

Шина EISA позволяет адресовать 4-Гбайтное адресное про­странство, доступное микропроцессорам 180386/486. Однако дос­туп к этому пространству могут иметь не только центральный процессор, но и платы управляющих устройств типа bus master — главного абонента (то есть устройства, способные управлять пе­редачей данных по шине), а также устройства, имеющие возможность организовать режим DMA. Стандарт EISA поддерживает многопроцессорную архитектуру для «интеллектуальных» устройств (плат), оснащенных собственными микропроцессорами. Поэтому данные, например, от контроллеров жестких дисков, графических контроллеров и контроллеров сети могут обрабаты­ваться независимо, не загружая при этом основной процессор. Теоретически максимальная скорость передачи по шине

EISA в так называемом пакетном режиме (burst mode) может достигать 33 Мбайт/с. В обычном (стандартном) режиме она не превосхо­дит, разумеется, известных значений для ISA.

На шине EISA предусматривается метод централизованного Управления, организованный через специальное устройство — системный арбитр. Таким образом поддерживается использова­ло ведущих устройств на шине, однако возможно также предоставление шины запрашивающим устройствам по циклическому принципу.

Как и для шины ISA, в системе EISA имеется 7 каналов DMA. выполнение DMA-функций полностью совместимо с аналогичными операциями на ISA-шине, хотя они могут происходить и несколько быстрее. Контроллеры DMA имеют возможность под­держивать 8-, 16- и 32-разрядные режимы передачи данных. В общем случае возможно выполнение одного из четырех циклов обмена между устройством DMA и памятью системы. Это ISA-совместимые циклы, использующие для передачи данных 8 так­тов шины; циклы типа А, исполняемые за б тактов шины; циклы типа В, выполняемые за 4 такта шины, и циклы типа С (или burst DMA), в которых передача данных происходит за один такт шины. Типы циклов А, В и С поддерживаются 8-, 16- и 32-разрядными устройствами, причем возможно автоматическое изменение раз­мера (ширины) данных при передаче в не соответствующую раз­меру память. Большинство ISA-совместимых устройств, исполь­зующих DMA, могут работать почти в 2 раза быстрее, если они будут запрограммированы на применение циклов А или В, а не стандартных (и сравнительно медленных) ISA-циклов. Такая про­изводительность достигается только путем улучшения арбитража шины, а не в ущерб совместимости с ISA. Приоритеты DMA в системе могут быть либо «вращающимися» (переменными), либо жестко установленными. Линии прерывания шины ISA, по которым запросы прерывания передаются в виде перепадов уровней напряжения (фронтов сигналов), сильно подвержены импульсным помехам. Поэтому в дополнение к привычным сигналам прерываний на шине ISA, активным только по своему фронту, в системе EISA предусмот­рены также сигналы прерываний, активные по уровню. Причем для каждого прерывания выбор той или иной схемы активности может быть запрограммирован заранее. Собственно прерывания, активные по фронту, сохранены в EISA только для совместимо­сти со «старыми» адаптерами ISA, обслуживание запросов на пре­рывание которых производит схема, чувствительная к фронту сиг­нала. Понятно, что прерывания, активные по уровню, менее под­вержены шумам и помехам, нежели обычные. К тому же (теоре­тически) по одной и той же физической линии можно передавать бесконечно большое число уровней прерывания. Таким образом, одна линия прерывания может использоваться для нескольких запросов.

Для компьютеров с шиной EISA предусмотрено автоматическое конфигурирование системы. Каждый изготовитель плат расширения для компьютеров с шиной EISA поставляет вместе этими платами и специальные файлы конфигурации. Информация из этих файлов используется на этапе подготовки системы

работе, которая заключается в разделении ресурсов компьютера между отдельными платами. Для «старых» плат адаптеров пользователь должен сам подобрать правильное положение DIP-перекдючателей (рис. 25) и перемычек, однако сервисная программа на EISA-компьютерах позволяет отображать установленные положе­ния соответствующих переключателей на экране монитора и дает некоторые рекомендации по правильной их установке. Помимо этого в архитектуре EISA предусматривается выделение опреде­ленных групп адресов ввода-вывода для конкретных слотов шины — каждому разъему расширения отводится адресный диа­пазон 4 Кбайта, что также позволяет избежать конфликтов между отдельными платами EISA.

Заметим, что компьютеры, использующие системные платы с шиной EISA, достаточно дорогие. К тому же шина по-прежнему тактируется частотой около 8—10 МГц, а скорость передачи уве­личивается в основном благодаря увеличению разрядности шины данных.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector