Dzl152.ru

Авто Дизель
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

При какой температуре плавится медь, плавление

При какой температуре плавится медь, плавление

какая температура плавления меди Удельная теплота плавления

Под плавлением в физике подразумевают процесс превращения тела из твердого состояния в жидкое, под действием температуры. Классическим повсеместным примером плавления из жизни является таяние льдов, их превращение в воду, или превращение твердого куска олова в жидкий припой под действием паяльника. Передача тому или иному телу определенного количества тепла может изменить его агрегатное состояние, это удивительное свойство твердых тел превращаться в жидкие под действием температуры имеет большое значение для науки и техники. Ученым (а также техникам, инженерам) важно знать при каких температурах плавятся те или иные

металлы(а порой и не только металлы), и для этого в физику вошло такое понятие как «удельная теплота плавления». О том, что означает удельная теплота плавления, какая ее формула расчета, читайте далее.

Почему твердое тело становится жидким?

Но давайте для начала разберем, как происходит сам процесс плавления на атомно-молекулярном уровне. Как мы знаем, в любом твердом теле все атомы и молекулы находятся четко и упорядочено в узлах

кристаллической решетки, благодаря этому твердое тело и является твердым.

Но что происходит, если мы начинает это самое гипотетическое твердо тело сильно нагревать – под действием температуры атомы и молекулы резко увеличивают свою кинетическую энергию и по достижении определенных критических значений, они начинают покидать кристаллическую решетку, вырываться из нее. А само твердое тело начинает буквально распадаться, превращаясь в некое жидкое вещество – так происходит плавление.

При этом процесс плавления происходит не резким скачком, а постепенно. Также стоит заметить, что плавление относится к эндотермическим процессам, то есть процессам, при которых происходит поглощение теплоты.

Процесс обратный к плавлению называют кристаллизацией – это когда тело из жидкого состояния наоборот превращается в твердое. Если вы оставите воду в морозилке, она через какое-то время превратится в лед – это самый типичный пример кристаллизации из реальной жизни.


Общие свойства олова

Все свойства этого металла можно разделить на две большие группы: физические и химические.

Физические характеристики


Это серебристый ковкий металл, который легко окисляется при температуре окружающей среды, при этом цвет олова изменяется на темно-серый. Если согнуть пластину из этого металла, то можно услышать характерный звук, так называемый «крик олова», который возникает из-за трения между составляющими его кристаллами. Одной из ярко выраженных его характеристик является резкое ухудшение механических свойств при определенных условиях, носящее название «оловянная чума»: ниже температуры -18 °C происходит разрушение металла, и он начинает выглядеть, как серый порошок.

Чистое олово имеет две аллотропных модификации: серую и белую. Серая модификация имеет кубическую кристаллическую структуру, является полупроводником, очень хрупкая, имеет низкую плотность и стабильна при температуре ниже 13,2 °C. Белая аллотропная модификация имеет тетрагональную кристаллическую структуру, хорошо проводит электрический ток и стабильна при температурах выше 13,2 °C.

Плавится металл при относительно низкой температуре 232 °C (для сравнения: железо плавится при 1535 °C). При этом необходимо понимать, отвечая на вопрос, при какой температуре плавится олово, что плавится именно его белая аллотропная модификация. Несмотря на низкую температуру плавления, кипение металла происходит при относительно высокой температуре 2602 °C (железо кипит при 2750 °C).

Химические свойства

Наиболее важным минералом является касситерит, SnO2. Однако, в настоящее время неизвестны рудные месторождения с высоким процентным содержанием этого минерала. Большую часть касситерита в мире добывают из наносных залежей низкого качества. Именно из этого минерала получают олово в промышленных масштабах. Для этого касситерит измельчают, получая его концентрат, а затем он подвергается плавке вместе с коксом, кварцем и известью в доменной печи. После этого отливки в виде блоков проходят окончательную очистку от примесей висмута, меди и железа.

Химический элемент олово хорошо реагирует как с сильными кислотами, так и с сильными основаниями, однако относительно инертен в нейтральных растворах. Подвергается коррозии в присутствии окислительных сред, в отсутствии кислорода металл практически не подвергается коррозии. При окислении на поверхности металла образуется плотная оксидная пленка, которая защищает остальную его часть от дальнейшего окисления.

Если при растворении солей в воде образуется кислая среда, тогда в присутствии окислителей или воздуха олово вступает в реакцию. К таким солям относятся хлориды, например, алюминия и железа. Большинство неводных жидкостей, например, масла и спирты практически не вступают в реакцию с оловом. Само олово и его простые неорганические соли не являются токсичными, однако, некоторые органические композиты обладают токсичностью.

Оксид олова (II), SnO является кристаллом черно-синего цвета, который растворяется в кислотах и основаниях. Его используют для производства солей в гальванопластике и при производстве стекла. Оксид олова (IV), SnO2 представляет собой белую пыль, нерастворимую в кислотах. Его используют в качестве незаменимого компонента для окраски в розовых, желтых и коричневых керамиках, а также в диэлектриках и тугоплавких сплавов. Он является важным агентом при полировке мрамора и других декоративных камней.

Хлорид олова (II), SnCl2 является основным ингредиентом в оловянной кислоте для пайки. Хлорид олова (IV), SnCl4 используется в качестве химического ингредиента для придания веса шелковой ткани, а также для стабилизации некоторых парфюмерных продуктов и стабилизации цвета мыла, а SnF2, имеющий белый цвет и растворимый в воде, применяется в качестве добавки к зубным пастам.

Читайте так же:
Как выставить зажигание на ямз 238

Органические химические соединения на основе этого элемента — это такие соединения, в которых присутствует хотя бы одна связь олова с водородом, Sn-H, и в которых металл проявляет степень окисления +4. Органические соединения, которые нашли свое приложение в индустрии, обладают следующими химическими формулами:

  • R4Sn;
  • R3SnX;
  • R2SnX2;
  • RSnX3.

Здесь R — органическая группа, например, метил, этил, бутил и другие, а X — неорганический элемент, например, хлор, кислород, флор и другие.

Определение удельной теплоты плавления

Удельной теплотой плавления называют физическую величину равную количеству тепла (в джоулях), которое необходимо передать твердому телу массой 1 кг, чтобы полностью перевести его в жидкое состояние. Удельную теплоту плавления обозначают греческой буквой «лямбда» – λ.

Формула удельной теплоты плавление выглядит так:

Где m – масса плавящегося вещества, а Q – количество тепла, переданное веществу при плавлении.

Зная значение удельной теплоты плавления, мы можем определить, какое количество тепла необходимо передать для тела с той или иной массой, для его полного расплавления:

Для разных веществ удельная теплота плавления была определена экспериментально.

График плавления и отвердевания кристаллических тел. Плавление металла Кристаллизация

Нахождение в природе

Свое латинское название Cuprum металл получил от названия острова Кипр, где его научились добывать в третьем тысячелетии до н. э. В системе Менделеева Сu получил 29 номер, а расположен в 11-й группе четвертого периода.

В земной коре элемент на 23-м месте по распространению и встречается чаще в виде сульфидных руд. Наиболее распространены медный блеск и колчедан. Сегодня медь из руды добывается несколькими способами, но любая технологий подразумевает поэтапный подход для достижения результата.

  • На заре развития цивилизации люди уже получали и использовали медь и ее сплавы.
  • В то время добывалась не сульфидная, а малахитовая руда, которой не требовался предварительный обжиг.
  • Смесь руды и углей помещали в глиняный сосуд, который опускался в небольшую яму.
  • Смесь поджигалась, а угарный газ помогал малахиту восстановиться до состояния свободного Cu.
  • В природе есть самородная медь, а богатейшие месторождения находятся в Чили.
  • Сульфиды меди нередко образуются в среднетемпературных геотермальных жилах.
  • Часто месторождения имеют вид осадочных пород.
  • Медяные песчаники и сланцы встречаются в Казахстане и Читинской области.

Таблица удельной теплоты плавления

Значение удельной теплоты для разных веществ: золота, серебра, цинка, олова и многих других металлов можно найти в специальных таблицах и справочниках. Обычно эти значения приводятся в виде таблицы.

Вашему вниманию таблица удельной теплоты плавления разных веществ

Вещество105 * Дж/кгккал/кгВещество105 * Дж/кгккал/кг
Алюминий3,892Ртуть0,13,0
Железо2,765Свинец0,36,0
Лед3,380Серебро0,8721
Медь1,842Сталь0,820
Нафталин1,536Цинк1,228
Олово0,5814Платина1,0124,1
Парафин1,535Золото0,6615,8

Интересный факт: самым тугоплавким металлом на сегодняшний день является карбид тантала – ТаС. Для его плавления необходима температура 3990 С. Покрытия из ТаС применяют для защиты металлических форм, в которых отливают детали из алюминия

История элемента

Этот элемент был открыт в 1854 году Халюсом Пелегрином. Однако его использование началось задолго до этой даты на Ближнем Востоке и Балканах около 2000 лет до нашей эры. В ту эпоху была открыта бронза (сплав олова и меди), которая дала название Бронзовому Веку. Производили из бронзы оружие и орудия труда, которые были более эффективны, чем камень и кость.

В античное время производство бронзы привело к развитию торговли между различными странами. Также существуют упоминания об этом металле в Ветхом Завете. Так, в Месопотамии делали бронзовое оружие, а в Древнем Риме покрывали оловом внутреннюю поверхность медных сосудов для повышения их коррозионной стойкости.

Рекомендованная литература и полезные ссылки

При какой температуре плавится медь

Плавления происходит, когда из твердого состояния металл переходит в жидкое. Каждый элемент имеет собственную температуру плавления. Многое зависит от примесей в металле. Обычная температура плавления меди — 1083 ° C. Когда добавляется олово, температура снижается до 930- 1140 ° C. Температура плавления зависит здесь от содержания в сплаве олова. В сплаве купрума с цинком плавление происходит при 900- 1050 ° C .

При нагреве любого металла разрушается его кристаллическая решетка. По мере нагревания повышается температура плавления, но затем выравнивается по достижении определенного предела температуры. В этот момент и плавится металла. Полностью расплавляется, и температура повышается снова.

Когда металл охлаждается, температура снижается, в определенный момент остается на прежнем уровне, пока металл не затвердеет полностью. После полного затвердевания температура снижается опять. Это демонстрирует фазовая диаграмма, где отображен температурный процесс с начала плавления до затвердения. При нагревании разогретая медь при 2560 ° C начинает закипать. Кипение подобно кипению жидких веществ, когда выделяется газ и появляются пузырьки на поверхности. В момент кипения при максимально больших температурах начинается выделение углерода, образующегося при окислении.

Плавление меди

Медь является первым металлом в истории человечества, с которым познакомились люди. Знакомство с медью значительно увеличило продуктивность орудий труда, упростив, в какой-то степени, труд. Хоть она является и мягким металлов, все таки, медные орудия труда, в отличие от каменных, давали существенный выигрыш в скорости рубки, строгании, сверлении, распилки древесины и т.д. Медь в природе встречается в самородном виде значительно чаще в отличие от золота, серебра и железа, что и является основной причиной того, что данный металл был освоен первым. Кроме чистой меди, древние люди также использовали сплавы меди и олова – бронзу, которая отличалась высокой прочностью и отлично поддавалась механической обработке (ковке). Таким образом, подтверждением того, что люди использовали медь и бронзу, являются многочисленные предметы, найденные в ходе археологических раскопок. Среди предметов присутствуют орудия труда (топоры, шила, иглы, гарпуны), оружие (мечи и топоры) и защитное снаряжение, украшения (бусы, серьги, браслеты), посуда и предметы повседневного обихода (сковороды и первые зеркала), а также культовые предметы, использовавшиеся в различных ритуалах, и обереги. Изначально для добычи меди использовали малахитовую руду, а не сульфидную. Это связано с тем, что малахитовая руда не требует предварительного обжига. Для добычи меди таким образом руду и уголь помещали в глиняную посуду и отправляли в так называемую печь (яму, в которой поджигали смесь). Угарный газ, который выделялся в результате горения, восстанавливал малахит до свободной меди:

Читайте так же:
Ричстакер что это такое

На Кипре, откуда и происходит латинское название меди, еще в III тыс. до н.э. существовали медные рудники и осуществлялось плавление меди.

температура плавления меди, ранее не было известно точно. Поэтому, чтобы получить точные расчеты, применяли график плавления меди: рассчитывалось время, на протяжении которого происходила выплавка меди, и примерная температура. Промышленная выплавка меди была начата в ХІІІ – ХІV вв. А с появлением электричества в XVIII – XIX вв. медь в большом количестве использовалась для изготовления проводов и других деталей, связанных с электричеством.

В периодической системе химических элементов Д.И. Менделеева медь обозначается Cu, т.е. Cuprum. Название происходит от острова Кипре, на котором было найдено очень богатое медное месторождение. Медь имеет атомный номер 29 и является элементом одиннадцатой группы четвертого периода (побочной первой группы) в системе. Простое вещество медь представляет собой переходный металл с характерным золотисто-розоватым цветом и хорошей пластичностью. На открытом воздухе на поверхности металла появляется оксидная пленка, благодаря которой медь имеет характерный интенсивный желтовато-красный оттенок. Данный металл является одним из четырех металлов, который обладает явной цветовой окраской, отличающейся от серой или серебристой. Для меди характерны высокая теплопроводность и электропроводность. По последней характеристике медь расположилась на втором месте, пропустив перед собой серебро. Ее удельная теплопроводность при температуре 20 0 С составляет 55,5 – 58 МСм/м. Также для меди характерный относительной большой температурный коэффициент сопротивления 0,4%/ 0 С. Атомная плотность меди составляет (N0) = 8,52 * 10 28 (атом/м 3 ). Удельная теплота плавления меди составляет 213 кДж/кг.

В настоящее время основными способами получения меди являются: пирометаллургический, гидрометаллургический и электролиз. Для получения меди используются медные руды и минералы.

Плавление меди

Медь имеет относительно низкую температуру плавления, что и позволяло в древние времена подвергать ее различной обработке, в том числе и плавлению. Ее можно было расплавить просто на костре или в примитивных печах, что, собственно, и делали наши предки. Температура плавления меди составляет 1083 0 С, а для медных сплавов, в зависимости от состава, — от 930 0 С до 1140 0 С. Если градус плавления меди повысить до 2560 0 С, то метал начинает закипать.

Плавление меди в домашних условиях

Процесс плавления меди в домашних условиях ничем не отличается от производственного. Кроме того, существует несколько способов, которые позволяют расплавить дома данный металл. Для этого понадобится приобрести некоторое оборудование. Сложность процесса напрямую зависит от того, какое оборудование будет применяться.

Плавление меди с помощью муфельной печи

Плавление в муфельной печи

Данный метод является наиболее простым для домашнего использования. Данное приспособление можно попробовать найти среди мастеров по металлу. Перед тем, как металл поместить в печь, его измельчают. Это делается для ускорения процесса, ведь чем меньше будут частички металла, тем быстрее они расплавятся. Далее металл помещаются в графитовый тигель и отправляют в печь, предварительно разогретую до нужной температуры. Сама форма должна быть разогрета до температуры, превышающей температуру плавления меди. Печь имеет специальное окно, позволяющее следить за протеканием процесса. Когда медь станет жидкой, тигель с расплавленным металлом достают из печи. Для этого используют железные щипцы. С поверхности металла убирается оксидная пленка и уже готовый жидкий металл переливают в приготовленную заранее емкость.

Плавление меди с помощью газовой горелки

Плавление газовой горелкой

Если тигельную печь найти нет возможности, то медь вполне можно расплавить ручной портативной газовой горелкой, которая размещается снизу дна емкости с металлом. В процессе необходимо следить, чтобы днище было полностью охвачено пламенем. Благодаря данному методу происходит быстрое окисление металла. Это случается по причине тесного контакта металла и воздуха. Чтобы избежать образования толстой оксидной пленки на поверхности меди, сверху на расплавленную массу насыпают мелко измельченный древесный уголь.

Альтернатива газовой горелки – паяльная лампа. Процесс плавки металла с ее помощью такой же, как и при применении газовой горелки.

Плавление меди с помощью горна

Плавка меди в тигле

Для этого понадобится тигель, в который кладут измельченный металл и вместе с раскаленным древесным углем помещают в горн. Чтобы ускорить процесс можно использовать обычный домашний пылесос, который включенный на режиме выдувания (как при побелке стен и потолков в домах в прошлом веке). Данный метод подойдет людям, регулярно занимающимся литьем металла дома в небольших количествах. Следует отметить, что пылесос должен иметь трубу малого диаметра и железный наконечник.

Читайте так же:
Как восстановить емкость аккумулятора

Плавление меди при помощи обычной микроволновки

Однако, простая микроволновка, которую мы используем каждый день для разогрева пищи, не совсем подойдет. Необходима микроволновка высокой мощности с измененной конструкцией. Тарелка-поддон убирается совсем. Из огнеупорного кирпича сооружается муфельная печь, в которую и помещается исходный материал. Чистая медь плохо поддается плавлению, так как в жидком виде ей присуща плохая текучесть. В связи с этим специалисты считают, что чистая медь не подходит для изготовления мелких и сложных деталей. Для производства таких деталей используют многокомпонентные соединения, в основе которых находится латунь, олово, а также цинк.

Таким образом, как видно, в домашних условиях возможно проводить плавку меди. Для этого процесса понадобятся некоторые инструменты:

  • муфельная печь;
  • чистое сырье;
  • жаропрочный тигель;
  • огнеупорная подставка;
  • крюк из стальной проволоки;
  • щипцы для извлечения тигля из печи;
  • средства индивидуальной защиты (очки, перчатки, одежда).

Алгоритм действий при выплавке меди:

  • надевание защитного костюма;
  • измельчение сырья и помещение его в тигель;
  • помещение в печь и установка необходимого температурного режима. Металл нельзя доводить до кипения;
  • извлечение тигля щипцами из печи после достижения заданной температуры и помещение его на огнеупорную подставку;
  • снятие окисной пленки с поверхности металла;
  • заливание медной жидкой массы в специально подготовленную заранее формочку;
  • охлаждение.

Применение меди

Применение меди

Из меди получаются очень красивые, изящные украшения. Однако, зачастую для украшений используют сплавы. Например, медь часто добавляют к золоту для увеличения прочности изделий, поскольку золото в чистом виде является достаточно мягким металлом и очень подвержено механическому воздействию (деформации, истиранию и другим повреждениям). Кроме этого, в настоящее время медь применяется во многих сферах человеческой деятельности. Это связано с тем, что она имеет свои уникальные физические и химические свойства. Так, в связи с низким удельным сопротивлением, медь используется в электротехнике для производства силовых и других кабелей, проводов или иных различных проводников (например, при печатном монтаже). Медные провода используются в обмотках электроприводов и силовых трансформаторов. Однако, стоит отметить, что медь должна быть достаточно чистой для данных целей, поскольку присутствие примесей снижает электропроводимость. Так, всего 0,2% алюминия в меди снижает ее электропроводимость практически на 10%.

В связи с таким свойством, как высокая теплопроводность, медь используют для разнообразных теплоотводных устройств, в теплообменниках. Среди таковых можно назвать радиаторы охлаждения, кондиционирования, отопления, тепловые трубки и компьютерные кулеры.

Высокая механическая прочность и устойчивость к различного рода повреждениям позволяет использовать медь в производстве бесшовных труб круглого сечения, применяемых для транспортировки жидкостей и газов (внутренние системы водоснабжения, отопления, газоснабжения, системы кондиционирования и холодильные агрегаты). В некоторых странах медные трубы выступают главным материалом, используемым для вышеперечисленных целей.

В некоторых сплавах медь является достаточно значимым элементом. К таким сплавам относится дюраль, в которой медь содержится в количестве 4,4%.

Кроме этого, медь является наиболее часто употребляемым катализатором полимеризации ацетилена. В связи с этим медные трубопроводы для транспортировки ацетилена применяются только в том случае, если максимальное содержание меди в сплаве составляет 64%, не более.

Также медь применяется в архитектуре – кровли и фасады могут выполнены из тонкой листовой меди. Срок их службы составляет около 100-150 лет.

Жидкий металл: подводные камни. Взгляд глазами химика

Температуру плавления металлов, которая изменяется от малейшего (-39 °С для ртути) до наибольшего (3400 °С для вольфрама), а также плотность металлов в твердом состоянии при 20 °С и плотности жидких металлов при температуре плавления приведены в таблице плавки цветных металлов.

Таблица 1. Плавки цветных металлов

Температура кипения и плавления металлов

В таблице представлена температура плавления металлов tпл, их температура кипения при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.
Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.

По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.

Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.

Температура плавления металлов таблица

Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:

  • температура плавления алюминия 660,32 °С;
  • температура плавления меди 1084,62 °С;
  • температура плавления свинца 327,46 °С;
  • температура плавления золота 1064,18 °С;
  • температура плавления олова 231,93 °С;
  • температура плавления серебра 961,78 °С;
  • температура плавления ртути -38,83°С.
Читайте так же:
Как узаконить гбо на авто

Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.

Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см3, то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.

Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.

Температура плавления металлов График плавления и отвердевания кристаллических тел. Плавление металла Кристаллизация

Эффекты от воздействия соединений олова

Активность соединений с этим элементом, так или иначе, влияет, как на организм человека, так и на экологию.

На здоровье человека


Как уже упоминалось, наиболее опасными для здоровья человека являются органические химические соединения олова. Эти вещества широко используются в индустрии, например, при производстве красок, пластика и пестицидов для агрикультуры. Кроме того, объемы производства органических соединений с этим металлом постоянно растут несмотря на то, что известны последствия отравления ими.

Эффекты от воздействия этих веществ на человека разнообразны, все зависит от типа соединения и от индивидуальных особенностей организма. Опасность соединения коррелирует с длиной связи между металлом и водородом, чем длиннее эта связь, тем менее опасно соединение. В связи с этим, самым опасным органическим веществом считается соединение олова с тремя этиловыми группами, водородные связи которого являются относительно короткими.

Попасть в организм человека эти вещества могут через еду, воздушно-капельным путем или от простого прикосновения к ним. Известны следующие эффекты воздействия органических соединений олова на организм человека:

  • При нахождении в помещении, содержащем пары этого металла, сильное раздражение верхних дыхательных путей, кожных покровов и глаз;
  • Головные боли, боли в желудке и отсутствие аппетита;
  • Тошнота и рвота;
  • Проблемы при мочеиспускании;
  • Сильное потоотделение и одышка.

Перечисленные эффекты могут привести к более серьезным последствиям:

  • Депрессия;
  • Проблемы с печенью;
  • Нарушение работы иммунной системы;
  • Повреждение хромосом клеток и недостаток красных телец в крови;
  • Повреждения мозга (нарушения сна, головные боли, провалы памяти, раздраженное состояние).

На окружающую среду

Как атомы олова, так и сам металл в чистом состоянии не являются токсичными ни для одного организма на земле, в свою очередь, практически все соединения с этим элементом органического характера являются вредными. Эти соединения могут находиться в окружающей среде в течение длительного периода времени. Они являются достаточно стойкими и практически не разлагаются под воздействием микроорганизмов, благодаря своим прочным водородным связям. Насколько бы малы ни были концентрации соединений этого металла в почве и воде, ввиду сказанного выше, они постоянно растут.

Известно, что органические оловянные соединения наносят большой вред водным экосистемам, поскольку они являются ядовитыми для грибов, водорослей и фитопланктона. Фитопланктон же является важным звеном водной экосистемы, поскольку он производит кислород для всех остальных живых организмов этой системы, а также является важной частью в пищевой цепи. Токсичность соединений олова различна для разных живых существ, например, трибутиловое олово является ядовитым для рыб и грибов, в то время как самым токсичным соединением для фитопланктона является трифеноловое олово.

Также известно, что органические соединения этого элемента оказывают отрицательное влияние на рост и репродуктивную функцию животных, нарушают работу ферментов. Такие соединения накапливаются главным образом в верхних слоях почвы и воды.



Температура плавления стали

Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.

Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.
Температура плавления стали — таблица

Стальtпл, °ССтальtпл, °С
Стали для отливок Х28Л и Х34Л1350Коррозионно-стойкая жаропрочная 12Х18Н9Т1425
Сталь конструкционная 12Х18Н10Т1400Жаропрочная высоколегированная 20Х23Н131440
Жаропрочная высоколегированная 20Х20Н14С21400Жаропрочная высоколегированная 40Х10С2М1480
Жаропрочная высоколегированная 20Х25Н20С21400Сталь коррозионно-стойкая Х25С3Н (ЭИ261)1480
Сталь конструкционная 12Х18Н101410Жаропрочная высоколегированная 40Х9С2 (ЭСХ8)1480
Коррозионно-стойкая жаропрочная 12Х18Н91410Коррозионно-стойкие обыкновенные 95Х18…15Х281500
Сталь жаропрочная Х20Н351410Коррозионно-стойкая жаропрочная 15Х25Т (ЭИ439)1500
Жаропрочная высоколегированная 20Х23Н18 (ЭИ417)1415Углеродистые стали1535
  1. Волков А. И., Жарский И. М. Большой химический справочник. — М: Советская школа, 2005. — 608 с.
  2. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  3. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.



Прочность металлов

Помимо способности перехода из твердого в жидкое состояние, одним из важных свойств материала является его прочность — возможность твердого тела сопротивлению разрушению и необратимым изменениям формы. Основным показателем прочности считается сопротивление возникающее при разрыве заготовки, предварительно отожженной. Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Обозначение прочности принято в МПа — Мега Паскалях.

Существуют следующие группы прочности металлов:

  • Непрочные. Их сопротивление не превышает 50МПа. К ним относят олово, свинец, мягкощелочные металлы
  • Прочные, 50−500МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
  • Высокопрочные, свыше 500МПа. Например, молибден и вольфрам.
Читайте так же:
Кар что это такое

Таблица прочности металлов

МеталлСопротивление, МПа
Медь200−250
Серебро150
Олово27
Золото120
Свинец18
Цинк120−140
Магний120−200
Железо200−300
Алюминий120
Титан580

Наиболее распространенные в быту сплавы

Как видно из таблицы, точки плавления элементов сильно разнятся даже у часто встречающихся в быту материалов.

Так, минимальная температура плавления у ртути -38,9 °C, поэтому в условиях комнатной температуры она уже в жидком состоянии. Именно этим объясняется то, что бытовые термометры имеют нижнюю отметку в -39 градусов Цельсия: ниже этого показателя ртуть переходит в твердое состояние.

Припои, наиболее распространенные в бытовом применении, имеют в своем составе значительный процент содержания олова, имеющего точку плавления 231.9 °C, поэтому большая часть припоев плавится при рабочей температуре паяльника 250−400°C.

Помимо этого, существуют легкоплавкие припои с более низкой границей расплава, до 30 °C и применяются тогда, когда опасен перегрев спаиваемых материалов. Для этих целей существуют припои с висмутом, и плавка данных материалов лежит в интервале от 29,7 — 120 °C.

Расплавление высокоуглеродистых материалов в зависимости от легирующих компонентов лежит в границах от 1100 до 1500 °C.

Точки плавления металлов и их сплавов находятся в очень широком температурном диапазоне, от очень низких температур (ртуть) до границы в несколько тысяч градусов. Знание этих показателей, а так же других физических свойств очень важно для людей, которые работают в металлургической сфере. Например, знание того, при какой температуре плавится золото и другие металлы пригодятся ювелирам, литейщикам и плавильщикам.

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Наиболее низкая температура плавления у ртути — она плавится даже при -39 °C, самая высокая у вольфрама — 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.



Тепловые свойства меди

Характерной особенностью меди является ее высокая теплопроводность, в 6 раз большая, чем у железа, и более высокая, чем у железа, механическая стойкость при низких температурах.
Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса алюминия, железа, кислорода, мышьяка, сурьмы, серы, селеа, фосфора.
Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена, особенно труб, листовой меди и медной проволоки. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.
Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.
Тепловое расширение меди (при 20 — 100 град. C) — 0,0168 мм / м / ºC.
Чистая медь и ее сплавы не являются жаростойкими материалами, однако, в некоторых случаях они применяются при повышенных температурах, когда от конструкции требуется повышенная электропроводность или теплопроводность. Используется медь с низким содержанием кислорода (<<0,04 %). Когда требуется прочность изделия, то вводится мышьяк (0,4 %). Добавки Сё (1,0 %), Сг (0,3 %) и Ag (0,1 %) также улучшают механические свойства меди при повышенных температурах, причем электропроводность при этом остается практически без изменения.
У меди высокая теплопроводность, что обуславливает достаточно сложный процесс монтажных и других работ, имеющих свою специфику. Сварка, пайка, резка меди требует более концентрированного нагрева, чем для стали, и зачастую предварительного и сопутствующего подогрева металла.
Медь, помимо широкого применения в технике по причине ее высокой электропроводности, используется в химическом машиностроении в качестве конструкционного материала для изготовления разнообразной химической аппаратуры и, в особенности, теплообменной аппаратуры (выпарные аппараты, теплообменники, конденсаторы, испарители, змеевики). Объясняется это высокой теплопроводностью меди и ее сплавов, их благоприятными физико-механическими свойствами при достаточно высокой.
Существует несколько марок меди, теплопроводность которых при низких температурах может быть весьма различной в зависимости от количества и характера примесей.

Температура плавления меди 1083,85 C (1357.77 ± 0.20·K).

Принятые значения термодинамических величин для меди и ее соединений в кристаллической и жидкой фазах.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector